

- 316L SS
- Wet/Wet Differential
- Low Pressure

DESCRIPTION

The DP86 differential pressure sensor is a double-sided, media compatible, piezoresistive silicon pressure sensor packaged in a 316L stainless steel housing. The DP86 is designed for o-ring mounting. The sensing package utilizes silicone oil to transfer pressure from the two 316L stainless steel diaphragms to a single sensing element.

The DP86 is designed for high performance, low pressure applications where differential pressure measurement is required. The stainless steel package makes it suitable for use in liquids and corrosive environments.

Please refer to the DP86 uncompensated, non-silicone oil, constant current and constant voltage (fittings and cable design) for more information on different features of the DP86.

FEATURES

- O-Ring Mount
- Up to -40°C to +125°C Operating Range
- Up to ±0.1% Pressure Non Linearity
- Solid State Reliability
- Low Pressure

APPLICATIONS

- Level Controls
- Tank Level Measurement
- OEM Equipment
- Corrosive Fluids and Gas Measurement Systems
- Flow Measurements

STANDARD RANGES

Range	psid
0 to 1	•
0 to 5	•
0 to 15	•
0 to 30	•
0 to 50	•
0 to 100	•
0 to 300	•
0 to 500	•

DP86

PERFORMANCE SPECIFICATIONS

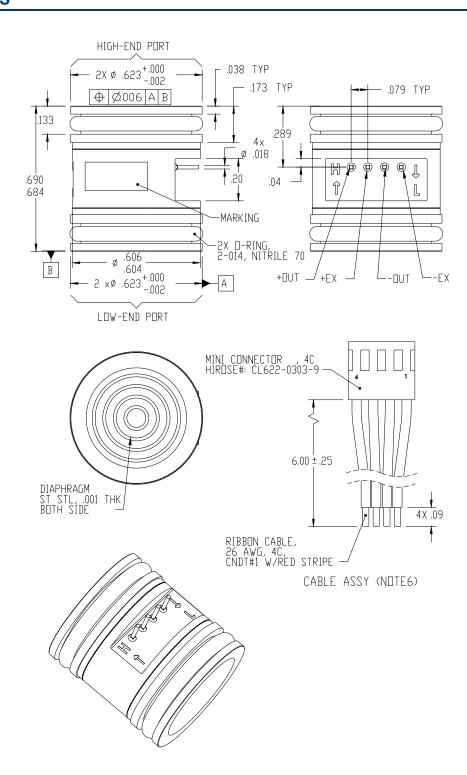
Supply Current: 1.5mA

Ambient Temperature: 25°C (unless otherwise specified)

PARAMETERS	001PSI			005PSI			≥015PSI		LINUTO	NOTEO	
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	NOTES
Sensitivity	9.0		15.0	12.5	19.5	26.5	13.2	20	26.5	mV/V@FS	
Zero Pressure Output	-4.0		8.0	-6.0		8.0	-6.0		8.0	mV/V	1
Pressure Non Linearity	-0.30		0.30	-0.20		0.20	-0.10		0.10	%Span	2
Pressure Hysteresis	-0.10		0.10	-0.10		0.10	-0.05		0.05	%Span	
Input/Output Resistance	4400		6200	3.8K	4400	5800	3800	4400	5800	Ω	
Temp. Coefficient - Span	-2700		-2200	-1450	-1250	-1000	-1450	-1250	-1000	ppm/°C	3
Temp. Coefficient - Offset		1			1			1		uV/V/°C	3
Temp. Coefficient – Resistance	2200	2550	2900	1300	1510	1750	1300	1510	1750	ppm/°C	3
Thermal Hysteresis – Span	-0.25		0.25	-0.25		0.25	-0.25		0.25	%Span	3
Thermal Hysteresis – Offset	-0.25		0.25	-0.25		0.25	-0.25		0.25	%Span	3
Line (Common Mode) Pressure			1000			1000			1000	psi	
Line Pressure Effect on Zero			4.0			0.8			0.5	%Span/1Kpsi	
Pressure Overload			10X			3X			3X	Rated	4
Pressure Burst			12X			4X			4X	Rated	5
Operating Temperature	-40		+85	-40		+125	-40		+125	°C	6
Storage Temperature	-40		+125	-40		+125	-40		+125	°C	6
Vibration (10~2000Hz)			20			20			20	g	
Insulation Resistance (50Vdc)	50			50			50			$M\Omega$	7
Output Load Resistance	5			5			5			ΜΩ	8
Supply Voltage		5.0	12.0		5.0	9.5		5	9.5	V	
Supply Current			2.0			1.5			1.5	mA	
Voltage Breakdown			500			500			500	Vrms	9
Endurance (FS @ 25°C)					1,000,00	0				Cycles	

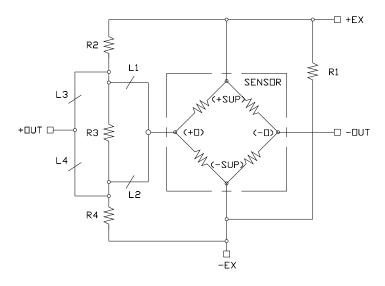
Media Compatibility -

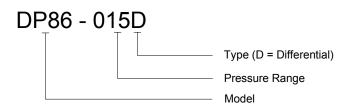
Pressure Port


All fluids and gases compatible with 316 Stainless Steel & Nitrile

Notes

- 1. Measured at ambient.
- 2. Best fit straight line
- 3. Over the temperature range -20°C to +85°C (0°C to 50°C for 1psi, 0°C to 70°C for 5psi) with respect to 25°C.
- 4. For high-end port, rated or 1000psi whichever is less; for low-end port, rated or 150psi whichever is less.
- 5. The maximum pressure that can be applied to a transducer without rupture of either the sensing element or transducer.
- 6. Max temp for cable and connector is -20°C to +105°C.
- 7. Between case and sensing element.
- 8. Load resistance to reduce measurement errors due to output loading.
- 9. At dry air.


DIMENSIONS



COMPENSATION SCHEMATIC

(Sensors can be compensated using the schematic to get improved performance. A calibration data sheet is included with each unit that provides measured values along with resistor values that will achieve the calculated compensated performance.)

ORDERING INFORMATION

NORTH AMERICA

Measurement Specialties 45738 Northport Loop West Fremont, CA 94538 Tel: 1-800-767-1888

Fax: 1-510-498-1578

Sales: pfg.cs.amer@meas-spec.com

EUROPE

Measurement Specialties (Europe), Ltd. 26 Rue des Dames 78340 Les Clayes-sous-Bois, France Tel: +33 (0) 130 79 33 00

Fax: +33 (0) 134 81 03 59

Sales: pfg.cs.emea@meas-spec.com

ASIA

Measurement Specialties (China), Ltd. No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen 518057 China

Tel: +86 755 3330 5088 Fax: +86 755 3330 5099

Sales: pfg.cs.asia@meas-spec.com

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.